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Examples of Multi-Scale Phenomena in

Solids

Fracture/Fallure of Solids
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Concurrent Multiscales: Motivation

» Molecular dynamics simulations are limited to small domains (~106-108
atoms) and small time frames (~nanoseconds)

— Experiments, even on nano-systems, involve much larger systems over
longer times

« Continuum models are good, but not always adequate

— Problems in fracture and failure of solids require improved constitutive
models to describe material behavior

— Molecular dynamics is required in regions of high deformation or
discontinuity

» Multiple scale nature of these problems calls for a combined molecular
dynamics/continuum mechanics approach
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Concurrent Multiple Scales: Goals

» Method for coupling molecular dynamics to finite element or meshfree
computations in concurrent simulations

— Simulation of time dependent, finite temperature problems
« True “coarse scale” discretization in continuum
— No meshing down to atomic scale
— Subcycling time-stepping algorithms to take advantage of multiple time
scales
« don’t want to be limited to nano time scale everywhere in the domain
« Easy implementation
— Re-use of existing MD and continuum codes
— Easily parallelizable algorithms
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Concurrent Coupled Simulations

» Molecular dynamics to be used in
region of interest
— near crack/shear band tip
— inside shear band
— at area of large deformation
— around dislocations
— efc.
 Finite elements/meshless “coarse
scale” defined everywhere in
domain
— not just overlap/handshake region
 Bridging scale used to ensure FEM
gives correct coarse scale behavior
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2-Part Strategy for Multiscale Coupling

* First, formally define exactly what is simulated at each scale
— decompose total solution into coarse and fine scales

— “bridging scale” used to represent the part of the total solution
common to both simulations

 provides coupling between the two simulations
e Second, eliminate fine scale degrees of freedom analytically
outside of region of interest
— use molecular dynamics (MD) only where necessary

— use bridging scale decomposition to further define coupling between
simulations
 constitutive law in pure coarse scale region
* boundary conditions on MD region
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* Fields like displacement are decomposed into coarse and fine
scales: U=Tu+U"

Coarse-Fine Decomposition

» Coarse scale is represented by smooth basis functions
associated with nodes, e.g. finite element shape functions:

— _ matrix —
u(x,)= Z N, (X, b, —=Zp T =Nd
— nodal degrees of freedom minimize mass-weighted error norm:

E=(u-Nd)M ,(u-Nd)

% —00 d=(N"M,N)*N"M U
dd
— This leads to a definition of the coarse scale in terms of a projection

matrix:

u=~Pu

P = N(NTM ANleTM A @ Nt
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« Once coarse scale is defined, fine scale is “everything else”:

Coarse-Fine Decomposition

u=u-u
=u-Pu

=(1-Pu=Qu
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Concurrent Multiscale Solution

 Use FEM for the coarse scale, MD for the fine scale in the
decomposition:

u=Nd —— > solve d using FEM

u'= (I —P)q ——*> solve q using MD

« With our choice of projection operator, kinetic energy separates
completely into coarse and fine scales:

1. . 1 -~
K.==d'"Md+=¢g"Mc
75 2q g

» Coupling between scales is only through the forcing term
— Final momentum equations become:

Coarsescale:  Md=Nf(T+u’)
Finescale: mJg, =f, (U+u')
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Coarse Scale Modeling

» Coarse scale equation can be related to usual finite element treatment
by approximating summations over atoms as domain integrals:

Z M IJdJ :fl (U,U')
where

M = IQ p(X)NI (X)NJ (X)jx

* The nodal force depends on the coarse scale only through the
deformation gradient F:
ouU

f =

ad,

:_Za

Wo Av,
ad,

oF, OW,

= _Z W aFT Ava = _.[Q |\II X (X)PK (X)dV
a | a
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Fine Scale Boundary Conditions

« We want to avoid grading the coarse mesh down to the atomic lattice
scale at the boundary

— expensive
— too much information
— limits coarse scale time step
 Information passes from a fine MD lattice directly into a coarse scale
mesh

— small-scale energy can’t be represented on the coarse scale, has nowhere
else to go

— leads to internal reflection of small scale waves
* Proper boundary treatment requires accounting for fine scale dynamics
that are not simulated directly

— correct boundary treatment falls out automatically from bridging scale
decomposition
* linearize in the fine scales at the boundary
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Cil(t): M _Alfl (’[)+I;O(t - T)aIZ (T)dT + Ri(t) Region 1: MD + FEM

a, (t): M ;12f; (’[)—ﬁz (’[) Region 2: FEM only (+ “ghost atoms™)

where f'(t) are forces computed using just the coarse scale
displacements outside MD region (e.g. through “ghost atoms”)
» The total forcing term consists of three major parts:

— The standard interatomic force computed in MD simulation by
assuming displacements of all atoms just outside the boundary are
given by the coarse scale

— A time history-dependent dissipation at the boundary (similar to a
damping term)
— A random forcing term at the boundary
 the form of this term can be related to the temperature of the solid:

(ROR (0))=-5,Blt)ksT

MD Boundary Condition
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Example Problem: 1D Harmonic Chain
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Effects of BC’s on Internal Wave Reflection
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Energy Transfer out of MD Region

[Multiscale with matched velocity BC|
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Energy Transfer out of MD Region:
Nonlinear Potential

Normalized MD region energy




« Damping kernel can be easily computed for
any regular crystal lattice across a planar
boundary

periodicity allows spatial Fourier transform

unit cells can be indexed (I,m,n) in 3D, or (I,m) in
2D

boundary condition obtained by solving for
atoms just outside boundary (I=1) in terms of
atoms just inside boundary (I=0)

final boundary condition has form of time
history integration with spatial coupling along
boundary:

(0= 3 [ 0w t-hon (i

note that u and f are vectors containing all dof’s
in the unit cell, and 6 is a matrix coupling them

Reference: G. Wagner, E. Karpov and W.K. Liu.
Comp Meth. Appl. Mech. Eng., to appear (2004).
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Damping Kernels in 3D: Carbon Structures
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2D Multiscale Wave Propagation
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2D Dynamic Crack Propagation
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Problem Description:

» LJ6-12 potential, o=¢=1

» Nearest neighbor interactions

90000 atoms, 1800 finite
elements (900 in coupled region)

100 atoms per finite element

« At = 40At 4

« Ramp velocity BC on FEM

 Full MD = 180,000 atoms
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Summary: Coupled MD/FEM

 Bridging scale decomposition allows concurrent simulation of fine
scale using MD and coarse scale using FEM

— bridging scale projection provides a unique decomposition of total
solution for separation into coarse and fine scales

— coarse scale mesh need not correspond to atomic lattice for coupling

— subcycling can be used to take advantage of the different time scales in
the coarse and fine regions

— coarse scale equations and boundary conditions follow directly from the
multi-scale formulation

e Future work:

— study of approximations in boundary conditions
 truncations of summations/integrals, approximations to kernel function

— determination of most accurate/efficient integration of coarse scale region
near MD boundary

— development of coupled energy equation to track fine scale energy
 time averaging as part of coarse scale projection
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